Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium.

Identifieur interne : 000381 ( Main/Exploration ); précédent : 000380; suivant : 000382

Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium.

Auteurs : Miao Wu [Suède] ; Gregg T. Beckham ; Anna M. Larsson ; Takuya Ishida ; Seonah Kim ; Christina M. Payne ; Michael E. Himmel ; Michael F. Crowley ; Svein J. Horn ; Bj Rge Westereng ; Kiyohiko Igarashi ; Masahiro Samejima ; Jerry St Hlberg ; Vincent G H. Eijsink ; Mats Sandgren

Source :

RBID : pubmed:23525113

Descripteurs français

English descriptors

Abstract

Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain.

DOI: 10.1074/jbc.M113.459396
PubMed: 23525113
PubMed Central: PMC3642327


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Wu, Miao" sort="Wu, Miao" uniqKey="Wu M" first="Miao" last="Wu">Miao Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala</wicri:regionArea>
<wicri:noRegion>SE-750 07 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
</author>
<author>
<name sortKey="Larsson, Anna M" sort="Larsson, Anna M" uniqKey="Larsson A" first="Anna M" last="Larsson">Anna M. Larsson</name>
</author>
<author>
<name sortKey="Ishida, Takuya" sort="Ishida, Takuya" uniqKey="Ishida T" first="Takuya" last="Ishida">Takuya Ishida</name>
</author>
<author>
<name sortKey="Kim, Seonah" sort="Kim, Seonah" uniqKey="Kim S" first="Seonah" last="Kim">Seonah Kim</name>
</author>
<author>
<name sortKey="Payne, Christina M" sort="Payne, Christina M" uniqKey="Payne C" first="Christina M" last="Payne">Christina M. Payne</name>
</author>
<author>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
</author>
<author>
<name sortKey="Crowley, Michael F" sort="Crowley, Michael F" uniqKey="Crowley M" first="Michael F" last="Crowley">Michael F. Crowley</name>
</author>
<author>
<name sortKey="Horn, Svein J" sort="Horn, Svein J" uniqKey="Horn S" first="Svein J" last="Horn">Svein J. Horn</name>
</author>
<author>
<name sortKey="Westereng, Bj Rge" sort="Westereng, Bj Rge" uniqKey="Westereng B" first="Bj Rge" last="Westereng">Bj Rge Westereng</name>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</author>
<author>
<name sortKey="St Hlberg, Jerry" sort="St Hlberg, Jerry" uniqKey="St Hlberg J" first="Jerry" last="St Hlberg">Jerry St Hlberg</name>
</author>
<author>
<name sortKey="Eijsink, Vincent G H" sort="Eijsink, Vincent G H" uniqKey="Eijsink V" first="Vincent G H" last="Eijsink">Vincent G H. Eijsink</name>
</author>
<author>
<name sortKey="Sandgren, Mats" sort="Sandgren, Mats" uniqKey="Sandgren M" first="Mats" last="Sandgren">Mats Sandgren</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23525113</idno>
<idno type="pmid">23525113</idno>
<idno type="doi">10.1074/jbc.M113.459396</idno>
<idno type="pmc">PMC3642327</idno>
<idno type="wicri:Area/Main/Corpus">000374</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000374</idno>
<idno type="wicri:Area/Main/Curation">000374</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000374</idno>
<idno type="wicri:Area/Main/Exploration">000374</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Wu, Miao" sort="Wu, Miao" uniqKey="Wu M" first="Miao" last="Wu">Miao Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala</wicri:regionArea>
<wicri:noRegion>SE-750 07 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
</author>
<author>
<name sortKey="Larsson, Anna M" sort="Larsson, Anna M" uniqKey="Larsson A" first="Anna M" last="Larsson">Anna M. Larsson</name>
</author>
<author>
<name sortKey="Ishida, Takuya" sort="Ishida, Takuya" uniqKey="Ishida T" first="Takuya" last="Ishida">Takuya Ishida</name>
</author>
<author>
<name sortKey="Kim, Seonah" sort="Kim, Seonah" uniqKey="Kim S" first="Seonah" last="Kim">Seonah Kim</name>
</author>
<author>
<name sortKey="Payne, Christina M" sort="Payne, Christina M" uniqKey="Payne C" first="Christina M" last="Payne">Christina M. Payne</name>
</author>
<author>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
</author>
<author>
<name sortKey="Crowley, Michael F" sort="Crowley, Michael F" uniqKey="Crowley M" first="Michael F" last="Crowley">Michael F. Crowley</name>
</author>
<author>
<name sortKey="Horn, Svein J" sort="Horn, Svein J" uniqKey="Horn S" first="Svein J" last="Horn">Svein J. Horn</name>
</author>
<author>
<name sortKey="Westereng, Bj Rge" sort="Westereng, Bj Rge" uniqKey="Westereng B" first="Bj Rge" last="Westereng">Bj Rge Westereng</name>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</author>
<author>
<name sortKey="St Hlberg, Jerry" sort="St Hlberg, Jerry" uniqKey="St Hlberg J" first="Jerry" last="St Hlberg">Jerry St Hlberg</name>
</author>
<author>
<name sortKey="Eijsink, Vincent G H" sort="Eijsink, Vincent G H" uniqKey="Eijsink V" first="Vincent G H" last="Eijsink">Vincent G H. Eijsink</name>
</author>
<author>
<name sortKey="Sandgren, Mats" sort="Sandgren, Mats" uniqKey="Sandgren M" first="Mats" last="Sandgren">Mats Sandgren</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalytic Domain (MeSH)</term>
<term>Cellobiose (chemistry)</term>
<term>Cellobiose (metabolism)</term>
<term>Copper (chemistry)</term>
<term>Copper (metabolism)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Mixed Function Oxygenases (chemistry)</term>
<term>Mixed Function Oxygenases (metabolism)</term>
<term>Phanerochaete (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellobiose (composition chimique)</term>
<term>Cellobiose (métabolisme)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Cuivre (composition chimique)</term>
<term>Cuivre (métabolisme)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Mixed function oxygenases (composition chimique)</term>
<term>Mixed function oxygenases (métabolisme)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellobiose</term>
<term>Copper</term>
<term>Fungal Proteins</term>
<term>Mixed Function Oxygenases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellobiose</term>
<term>Copper</term>
<term>Fungal Proteins</term>
<term>Mixed Function Oxygenases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellobiose</term>
<term>Cuivre</term>
<term>Mixed function oxygenases</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellobiose</term>
<term>Cuivre</term>
<term>Mixed function oxygenases</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Domaine catalytique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23525113</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>288</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>12828-39</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M113.459396</ELocationID>
<Abstract>
<AbstractText>Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Miao</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beckham</LastName>
<ForeName>Gregg T</ForeName>
<Initials>GT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Larsson</LastName>
<ForeName>Anna M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ishida</LastName>
<ForeName>Takuya</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Seonah</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Payne</LastName>
<ForeName>Christina M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Himmel</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Crowley</LastName>
<ForeName>Michael F</ForeName>
<Initials>MF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Horn</LastName>
<ForeName>Svein J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Westereng</LastName>
<ForeName>Bjørge</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Igarashi</LastName>
<ForeName>Kiyohiko</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Samejima</LastName>
<ForeName>Masahiro</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ståhlberg</LastName>
<ForeName>Jerry</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eijsink</LastName>
<ForeName>Vincent G H</ForeName>
<Initials>VG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sandgren</LastName>
<ForeName>Mats</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4B5Q</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>16462-44-5</RegistryNumber>
<NameOfSubstance UI="D002475">Cellobiose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D006899">Mixed Function Oxygenases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002475" MajorTopicYN="N">Cellobiose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006899" MajorTopicYN="N">Mixed Function Oxygenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biofuel</Keyword>
<Keyword MajorTopicYN="N">CBM33</Keyword>
<Keyword MajorTopicYN="N">Carbohydrate-binding Protein</Keyword>
<Keyword MajorTopicYN="N">Copper Monooxygenase</Keyword>
<Keyword MajorTopicYN="N">GH61</Keyword>
<Keyword MajorTopicYN="N">Glycoside Hydrolases</Keyword>
<Keyword MajorTopicYN="N">Lytic Polysaccharide Monooxygenase</Keyword>
<Keyword MajorTopicYN="N">Molecular Dynamics</Keyword>
<Keyword MajorTopicYN="N">Phanerochaete chrysosporium</Keyword>
<Keyword MajorTopicYN="N">Structural Biology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23525113</ArticleId>
<ArticleId IdType="pii">M113.459396</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M113.459396</ArticleId>
<ArticleId IdType="pmc">PMC3642327</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Sep;74(18):5628-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18676702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2012 Feb 16;75(5):1493-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22146477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;277:525-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18488323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1996 Dec 15;4(12):1395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Jul 30;30(10):1545-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12522267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jun;194(4):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22463738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1991 Jul;19(2-3):271-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1367241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2011 Aug;321(1):14-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1968 Apr 28;33(2):491-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5700707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2011 Apr 14;115(14):4118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21425804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Jan;259(1-2):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9914479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2009 Aug 6;113(31):10994-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Apr;110:480-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22342036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2011 Sep;20(9):1479-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21748815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W500-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Oct;77(19):7007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2012 Feb 17;416(2):239-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22132148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Oct 31;383(1):144-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Sep 5;28(18):7241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2554967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Dec;73(4):807-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 May;43(5):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Appl Biochem. 1997 Oct;26 ( Pt 2):97-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9357105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):3059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 2013 Jan 4;1271(1):144-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23246088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2011 Dec 16;6(12):1399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22004347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Sep 15;382(Pt 3):769-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15214846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Jul;59(Pt 7):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1977 May 25;112(3):535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">875032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 8;287(24):20603-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 25;280(12):11313-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1971 Feb;121(3):353-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5119766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2006 Mar;28(6):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16614901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Sep 26;272(3):383-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18779-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23112164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17164533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jan 16;275(2):309-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9466911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Apr 30;5(1):26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22546481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2011 Apr 21;115(15):4516-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21452798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jan 18;134(2):890-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22188218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):842-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 5;280(31):28492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15929981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jan 30;355(6359):472-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1996 Nov 7;96(7):2541-2562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2012 Feb 14;8(2):735-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26596620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Jul 02;5(1):45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2010 Jan 28;114(3):1447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20050714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Jun 6;20(6):1051-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22578542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 8;330(6001):219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20929773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Apr 20;49(15):3305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Oct 24;273(2):371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9344745</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
<name sortKey="Crowley, Michael F" sort="Crowley, Michael F" uniqKey="Crowley M" first="Michael F" last="Crowley">Michael F. Crowley</name>
<name sortKey="Eijsink, Vincent G H" sort="Eijsink, Vincent G H" uniqKey="Eijsink V" first="Vincent G H" last="Eijsink">Vincent G H. Eijsink</name>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
<name sortKey="Horn, Svein J" sort="Horn, Svein J" uniqKey="Horn S" first="Svein J" last="Horn">Svein J. Horn</name>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
<name sortKey="Ishida, Takuya" sort="Ishida, Takuya" uniqKey="Ishida T" first="Takuya" last="Ishida">Takuya Ishida</name>
<name sortKey="Kim, Seonah" sort="Kim, Seonah" uniqKey="Kim S" first="Seonah" last="Kim">Seonah Kim</name>
<name sortKey="Larsson, Anna M" sort="Larsson, Anna M" uniqKey="Larsson A" first="Anna M" last="Larsson">Anna M. Larsson</name>
<name sortKey="Payne, Christina M" sort="Payne, Christina M" uniqKey="Payne C" first="Christina M" last="Payne">Christina M. Payne</name>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
<name sortKey="Sandgren, Mats" sort="Sandgren, Mats" uniqKey="Sandgren M" first="Mats" last="Sandgren">Mats Sandgren</name>
<name sortKey="St Hlberg, Jerry" sort="St Hlberg, Jerry" uniqKey="St Hlberg J" first="Jerry" last="St Hlberg">Jerry St Hlberg</name>
<name sortKey="Westereng, Bj Rge" sort="Westereng, Bj Rge" uniqKey="Westereng B" first="Bj Rge" last="Westereng">Bj Rge Westereng</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Wu, Miao" sort="Wu, Miao" uniqKey="Wu M" first="Miao" last="Wu">Miao Wu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000381 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000381 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23525113
   |texte=   Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23525113" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020